

GAUSS
 ACADEMY of Mathematical Education

 MATHUNITESUS
2021 Gauss Math Tournament
 Division III Sprint Round

Instructions

Welcome to the $9^{\text {th }}$ annual Gauss Nathematics Tournament! Please make sure that you are in the correct division. You are about to take the Division III Sprint and Target rounds for students in grades $7-8$. If you are not in these grades, please let us know right away and we will help you find your proper division.

You will first take the Sprint Round, which will be a 50 minute contest consisting of 40 short-answer problems. The problems are in increasing difficulty order and are worth one point each.

After a short break following the end of the Sprint Round, you will take the Target Round, which will consist of 8 problems to be solved in 20 minutes. The problems are in increasing difficulty order and are worth two points each.

The ten highest total scorers on the Sprint and Target rounds will advance to the Countdown Round, an exciting head-to-head buzzer contest. More details will be given at the beginning of the Countdown Round.

You may use a calculator on both the Sprint and Target Rounds. However, other aids, such as books, notes, other people, magic crystal balls, etc. are prohibited.

Please read the section below regarding important formatting instructions. These rules are important to remember while taking the test as you may not receive credit for an improperly formatted answer.

Good luck, and may the odds be ever in your favor!

Formatting

For both the Sprint and Target Rounds, your answers will be collected on a Google Form. The answer to each question will be a rational number. If your answer is an integer, it should be input as such. For example, if a question asks "What is $1+2$?" the correct input is

If your answer is a rational number, you should input it as an improper fraction in lowest terms. If you answer as a mixed number or decimal, or is not in lowest terms, your answer will be marked wrong. For example, if a question asks "What is 57 divided by 6 in simplest form?" the only acceptable answer is:

$$
19 / 2
$$

The following answers will not be accepted:

$$
57 / 6 \quad 91 / 2 \quad 9.5
$$

If any answer is negative, simply enter a minus sign (dash) in front of the number, but do not leave any space between the minus sign and the number. For example, an answer of $-\frac{3}{4}$ should be input as:

$$
-3 / 4
$$

and not as:

$$
-3 / 4
$$

Please keep these rules in mind as you answer the problems!

2021 Gauss Math Tournament Division III (Sprint Round 50 minutes, 40 Questions)

1. Gina is inviting 4 boys and 6 girls to her party. If there are 7 girls and 6 boys in her class, how many ways are there to choose who to invite?
2. Two green balls and five red balls are placed in an urn. Two random balls are chosen from the urn, without replacement. What is the probability that both are red?
3. In a certain month, there are three Sundays with even-numbered dates. What day of the week is the $18^{\text {th }}$ of this month?
4. Gauss High School has 168 freshmen, 134 sophomores, 124 juniors, and 54 seniors. What percentage of the students at Gauss High School are freshmen?
5. Ayaka, Benjamin, and Cheung are playing a coin game. Each person repeatedly tosses a fair coin, and stops when he/she tosses heads for the first time. What is the probability that Ayaka, Benjamin, and Cheung all tossed the same number of tails?
6. The area of the parallelogram $A B C D$ is 56 square centimeters. E and F are the midpoints of $A B$ and $A D$, respectively. Find the area of triangle CEF.
7. How many degrees does the hour hand of a regular clock travel between 2:30 PM and 2:50 PM on the same day?
8. Let $A B C$ be a triangle with $A B=3, B C=4, C A=5$. Find the distance between the midpoints of the A -median and the C -median.
9. A triangle $A B C$ is intersected by a line I at point F on $A B$, point E on $A C$, and point D on the extension of $B C$. If triangle $A B D$ has a right angle at $A, B C=C D=13, A D=24$, and $D E$ bisects angle ADB, what is the length of AF?
10. Steve draws an equilateral triangle T. He then draws square A with the same perimeter as T, and square B with the same side length as T. What is the ratio of the area of A to the area of B ?
11. In the sequence, $A_{1}=2, A_{2}=15$, and for all positive integers, $A_{n+2}=A_{n+1}-A_{n}$. What is A_{2021} ?
12. Find $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{97 \cdot 99}$.
13. There are three positive integers x, y, z, so that $x+y=2021, z-x=2020$, and $x<y$. What is the maximum possible sum of x, y, z ?
14. Suppose that a sequence x_{n} of integers satisfies $x_{0}=1$ and $x_{n}=x_{n-1}-\operatorname{nif} x_{n-1} \geq$ 0 and $\mathrm{x}_{\mathrm{n}}=-\mathrm{x}_{\mathrm{n}-1}$ if $\mathrm{x}_{\mathrm{n}-1}<0$. Find x_{2021}.
15. Given that $x^{\wedge} 3-x=c$ has two real roots and c is a positive number, find the positive root.
16. Hunter writes down two real numbers such that their sum and product are equal. There exists a single real number x that Hunter could not have possibly written. What is x ?
17. What is the smallest perfect square that is two more than an odd prime?
18. Mr. Pickles likes to play with numbers and pickles, but mostly numbers. He wants to find the largest number less than 10,000 that is $2 \bmod 4,5 \bmod 7,9 \bmod 11$, and 13 $\bmod 15$. What is the sum of the digits of this number?
19. How many divisors of 240 are also divisors of 420 ?
20. Six circles are drawn in the plane. The number of regions created by the circles is S . Find the maximum possible value of S.
21. In each round of the game Math to Win! two players compete, and one will win, the other will lose. The total score of each player is the number of games they win. In a game of Math to Win! every pair of players among A, B, C, D compete in one round, for a total of 6 rounds. Given that A wins his game against D, and after all rounds are completed A, B, C have the same score, what is the score of D ?
22. Kyle has a 15-centimeter-long piece of wire. She cuts the wire into three pieces, each of which has a positive integer length. How many non-congruent triangles can be formed by the three pieces of wire?
23. A group of 11 students want to board two buses: Bus A which can hold up to 8 people and Bus B which can hold up to 3 people. Four of the students are Ada, Ben, Cat, and Dan. Given that Ada and Cat want to be on the same bus and Dan and Ben cannot both board bus A, how many ways are there for all 11 students to be assigned to a bus?
24. Alan has a square paper $A B C D$ with side length 4 . The paper is folded along $B D$ until the dihedral angle between planes $A B D$ and $C B D$ is 60°. In the resulting figure, what is the distance between A and the midpoint of $B C$?
25. Let a be a positive integer. There exists exactly one positive integer b such that there exists a nondegenerate triangle with side lengths $5, a$, and b. Find all possible values of a.
26. Let $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{n}}$ be positive integers so that $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}=19$. Maximize the value of $x_{1} x_{2} \ldots x_{n}$.
27. Given that the sequence $\left\{A_{n}\right\}$ satisfies $A_{1}=2$ and $A_{n+1}=\frac{1+A_{n}}{1-A_{n}}$ for all natural numbersn, find $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots \mathrm{~A}_{2021}$.
28. Find the sum of all solutions to $2-3 x=||x|-1|$.
29. Given that x and y are nonnegative real numbers satisfying $x+y=10$, minimize the value of $3 x^{2}+x y+2 y^{2}$.
30. Suppose that $\mathrm{f}(\mathrm{x})$ is a function $\mathrm{Q}^{+} \rightarrow \mathrm{Z}$ (from the positive rational numbers to the integers) which satisfies $f(1)=0$ and $f(x p)=f(x)+$ pfor any positive rational number xand prime p. Find the value of $f\left(\frac{2020}{2021}\right)$.
31. Find the sum of all integers $n>8$ such that $n^{\wedge} 2$ is divisible by $n-8$.
32. Find the largest positive integer zso that zcannot be expressed as $7 a+8 b+9 c f o r$ some nonnegative integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
33. Suppose that $\mathrm{x} \equiv \mathrm{a}(\bmod 7), \mathrm{x} \equiv \mathrm{b}(\bmod 11)$ for some positive integer x . Then $\mathrm{x} \equiv$ $x_{1} a+x_{2} b(\bmod 77)$ for all x, where x_{1}, x_{2} are integers from 0to 76inclusive. Find $x_{1}+$ x_{2}.
34. Find the last two digits of 2021^{2021}.
35. How many nonempty subsets of $\{1,2,4,8,16,32\}$ have the property that the product of the elements is divisible by the sum of the elements?
36. The sum of the divisors of N is equal to the sum of the divisors of 16 , where N is a positive integer not equal to 16 . Find N .
37. Andrew participated in the USA Multiplication Olympiad (USAMO). There are 6 problems. For each problem, Andrew gets an integer score from 0 to 7, inclusive. However, his final score is determined by multiplying the scores of the individual problems, not adding them together. How many possible scores could Andrew receive?
38. Let a be a positive real number. The lines $\mathrm{y}=\mathrm{ax}, \mathrm{y}=2 \mathrm{ax}$, and $\mathrm{x}+\mathrm{y}=1$ bound a triangle. Find the largest possible area of this triangle.
39. In the cube ABCD-A1B1C1D1 (with edges AA1, BB1, CC1, DD1) with side length $6, E$ is the midpoint of $A B$. What is the distance between lines $D E$ and $B 1 C$?
40. A right triangle has three integer side lengths. Moreover, the length of the altitude to the hypotenuse is also an integer. What is the smallest possible value of the length of this altitude?
