Name	 <u> </u>	
1	 	
2	 	
3		

1. [3] Compute the value of

$$\binom{6}{0}^{2} + \binom{6}{1}^{2} + \binom{6}{2}^{2} + \binom{6}{3}^{2} + \binom{6}{4}^{2} + \binom{6}{5}^{2} + \binom{6}{6}^{2}$$

2. [3] While adding up the first n positive integers, a student accidentally omitted the average of these integers from the sum. If the sum the student obtained is 420, what is the value of n?

3. [3] Jack rolls three standard dice. What is the expected value of the product of the numbers that he rolls?

Name			
Iname			

4.

5.				

6._____

4. [4] In ΔABC , $\underline{AC} = BC = 5$ and $\underline{AB} = 6$. Let ω be the circle tangent to \overline{AB} and \overline{AC} whose center lies on \overline{BC} . Compute the radius of ω .

5. [4] Find the number of four-digit multiples of seven containing exactly two distinct digits.

6. [4] Find the largest prime factor of $3^{12} + 8^2$.

Name	
7	-
8	-
9	

7. [6] Let a, b, c, and d be positive integers satisfying ab + bc + cd + da = 666. Find the smallest possible value of a + b + c + d.

8. [6] Let m and n be positive integers which satisfy m3+6=2n. Find the number of ordered pairs (m, n) such that m and n are both less than 2018.

9. [6] Find the remainder when $10^{2018} + 10^{201} + 10^{20} + 10^{2}$ is divided by 7.

Name	 	
10	 _	
11	 -	
12.		

10. [7] If $gcd(a,b)^2+ab=12*gcd(a,b)$, let N be the product of all possible values of a, where a and b are positive integers. Find the last three digits of N.

11. [7] Let ABC be a 3-4-5 triangle with right angle at B. Let D, E, F be the midpoints of BC, CA, AB respectively. Find the area of a triangle with side lengths AD, BE, and CF.

12. [7] Let S be the set of points in the coordinate plane satisfying the following conditions:

 $\begin{array}{l} y \geq 0 \\ y x^{2} + (max(x,y))^{2} \leq 2018 \\ \end{array}$ Find the area of S.

Name	 	
13		
14		
15.		

13. [8] Let a,b,c be complex numbers such that a+b+c = 1, $a^2 + b^2 + c^2 = 2$, $a^4+b^4+c^4 = 4$. Find the value of $a^6+b^6+c^6$.

14. [8] Let f(x) be a polynomial such that the remainders when f(x) is divided by x-1, x+1, and $x^2 + 1$ are 17, 9, and 7, respectively. Let r(x) be the remainder when f(x) is divided by x^4 -1. Calculate the value of r(4).

15. [8] Let Γ be a circle with diameter \overline{BD} and ΔABC be an equilateral triangle such that C lies on \overline{BD} . Suppose that \overline{AB} intersects Γ at two distinct points B and P, and \overline{AC} intersects Γ at Q. If $\overline{QC} = \frac{1}{2}$, find $\frac{AP}{PB}$.

16.				

17.			

18._____

16. [10] Triangle ABC has AB=5, AC=8, BC=7. If the foot of the A-altitude is D, and E,F are the reflections of D over AB and AC respectively, find the area of AEF.

17. [10] In triangle ABC, let D, E, and F be the feet of the altitudes from A, B, and C respectively. Let AD intersect EF at point X. If AE = 6, AC=16, and AF=32/5, find the ratio of FX to EX.

18. [10] Let r_1 , r_2 , and r_3 be the three distinct roots of the polynomial $x^3 + 500x - 1009$. Find the integer closest to the value of $|r_1| + |r_2| + |r_3|$

Nan	ne			
19.				

20.				

21.				

19. [12] In $\triangle ABC$, $\angle A = 90^{\circ}$, and D and E are on \overline{BC} , with D between B and E, such that \overline{AD} and \overline{AE} trisect $\angle A$. If [ACE]=10 and [ADE]=20, find [ABC].

20. [12] Find the sum of all prime numbers p such that $p^2 - 3p + 8$ is the cube of an integer.

21. [12] [10] Let a and b be real numbers, and r_1, r_2, r_3, r_4 be the roots of the polynomial $x^4 + ax^3 + x^2 + bx + 1$. Suppose that $(r_1 + 1)(r_2 + 1)(r_3 + 1)(r_4 + 1) = -18$ $(r_1^2 + 1)(r_2^2 + 1)(r_3^2 + 1)(r_4^2 + 1) = 420$

Find the product of all possible values of a.

Answer Key:

- 924
 29
- 3 343/8
- 4 24/11
- 5 75
- 6 37
- 7 55
- 8 0
- 9 5
- 10 480
- 11 9/2
- 12 (2018+3027pi)/4
- 13 515/64
- 14 194
- 15 5/7
- 16 300sqrt(3)/49
- 17 344/375
- 18 47
- 19 70-20sqrt(3)
- 20 46
- 21 11/2