Name \qquad

1. \qquad
2. \qquad
3. \qquad
4. [3] Compute the value of

$$
\binom{6}{0}^{2}+\binom{6}{1}^{2}+\binom{6}{2}^{2}+\binom{6}{3}^{2}+\binom{6}{4}^{2}+\binom{6}{5}^{2}+\binom{6}{6}^{2}
$$

2. [3] While adding up the first n positive integers, a student accidentally omitted the average of these integers from the sum. If the sum the student obtained is 420 , what is the value of n ?
3. [3] Jack rolls three standard dice. What is the expected value of the product of the numbers that he rolls?

Name \qquad
4. \qquad
5. \qquad
6. \qquad
4. [4] In $\triangle A B C, A C=B C=5$ and $A B=6$. Let ω be the circle tangent to $\overline{A B}$ and $\overline{A C}$ whose center lies on $\overline{B C}$. Compute the radius of ω.
5. [4] Find the number of four-digit multiples of seven containing exactly two distinct digits.
6. [4] Find the largest prime factor of $3^{12}+8^{2}$.

Name \qquad
7.
8. \qquad
9. \qquad
7. [6] Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d be positive integers satisfying $a b+b c+c d+d a=666$. Find the smallest possible value of $a+b+c+d$.
8. [6] Let m and n be positive integers which satisfy $\mathrm{m} 3+6=2 \mathrm{n}$.

Find the number of ordered pairs (m, n) such that m and n are both less than 2018.
9. [6] Find the remainder when $10^{2018}+10^{201}+10^{20}+10^{2}$ is divided by 7 .

Name \qquad
10. \qquad
11. \qquad
12. \qquad
10. [7] If $\operatorname{gcd}(a, b)^{2}+a b=12 * \operatorname{gcd}(a, b)$, let N be the product of all possible values of a , where a and b are positive integers. Find the last three digits of N .
11. [7] Let ABC be a 3-4-5 triangle with right angle at B . Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the midpoints of $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively. Find the area of a triangle with side lengths AD, BE, and CF .
12. [7] Let S be the set of points in the coordinate plane satisfying the following conditions:

1) $y \geq 0$. 2) $x^{2}+(\max (x, y))^{2} \leq 2018$.

Find the area of S .

Name \qquad
13. \qquad
14. \qquad
15. \qquad
13. [8] Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be complex numbers such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=1, \mathrm{a}^{\wedge} 2+\mathrm{b}^{\wedge} 2+\mathrm{c}^{\wedge} 2=2$, $a^{\wedge} 4+b^{\wedge} 4+c^{\wedge} 4=4$. Find the value of $a^{\wedge} 6+b^{\wedge} 6+c^{\wedge} 6$.
14. [8] Let $f(x)$ be a polynomial such that the remainders when $f(x)$ is divided by x $1, x+1$, and $x^{\wedge} 2+1$ are 17,9 , and 7 , respectively. Let $r(x)$ be the remainder when $f(x)$ is divided by $x^{\wedge} 4-1$. Calculate the value of $r(4)$.
15. [8] Let Γ be a circle with diameter $\overline{B D}$ and $\triangle A B C$ be an equilateral triangle such that C lies on $\overline{B D}$. Suppose that $\overline{A B}$ intersects Γ at two distinct
points B and P , and $\overline{A C}$ intersects Γ at Q . If $\frac{A Q}{Q C}=\frac{1}{2}$, find $\frac{A P}{P B}$.

Name \qquad
16. \qquad
17. \qquad
18. \qquad
16. [10] Triangle ABC has $\mathrm{AB}=5, \mathrm{AC}=8, \mathrm{BC}=7$. If the foot of the A -altitude is D , and E, F are the reflections of D over AB and AC respectively, find the area of AEF.
17. [10] In triangle $A B C$, let D, E, and F be the feet of the altitudes from A, B, and C respectively. Let AD intersect EF at point X . If $\mathrm{AE}=6, \mathrm{AC}=16$, and $\mathrm{AF}=32 / 5$, find the ratio of FX to EX.
18. [10] Let $r_{1}, r_{2 \text {, and }} r_{3}$ be the three distinct roots of the polynomial $x^{3}+500 x-1009$. Find the integer closest to the value of $\left|r_{1}\right|+\left|r_{2}\right|+\left|r_{3}\right|$.

Name \qquad
19. \qquad
20. \qquad
21. \qquad
19. [12] In $\Delta A \underline{B C}, \angle A=90^{\circ}$, and D and E are on $\overline{B C}$, with D between B and E , such that $\overline{A D}$ and $\overline{A E}$ trisect $\angle A$. If [ACE] $=10$ and $[\mathrm{ADE}]=20$, find [ABC].
20. [12] Find the sum of all prime numbers p such that $p^{2}-3 p+8$ is the cube of an integer.
21. [12] [10] Let a and b be real numbers, and $r_{1}, r_{2}, r_{3}, r_{4}$ be the roots of the polynomial $x^{4}+a x^{3}+x^{2}+b x+1$. Suppose that $\left(r_{1}+1\right)\left(r_{2}+1\right)\left(r_{3}+1\right)\left(r_{4}+1\right)=-18$, $\left(r_{1}^{2}+1\right)\left(r_{2}^{2}+1\right)\left(r_{3}^{2}+1\right)\left(r_{4}^{2}+1\right)=420$.
Find the product of all possible values of a.

Answer Key:
1924
229
3 343/8
4 24/11
575
637
755
80
95
10480
$119 / 2$
$12(2018+3027$ pi) $/ 4$
13 515/64
14194
15 5/7
16 300sqrt(3)/49
17 344/375
1847
19 70-20sqrt(3)
2046
21 11/2

